Status of the DAMIC-M dark matter experiment

Kellie J. McGuire for the DAMIC-M collaboration University of Washington 14 April 2023

APS April Meeting 2023

DArk Matter In CCDs at Modane

DAMIC-M: A kg-scale detector using silicon charge-coupled devices (CCDs) to search for light (sub-GeV) dark matter:

- sub-electron resolution
- 2-3 e⁻ energy threshold
- dark current $\sim 10^{-4}$ e⁻/pixel/day
- background rate < 1 dru

(1 differential rate unit = 1 event/kg/keV/day)

Located at the Laboratoire Souterrain de Modane (LSM) 1,700 meters below the Fréjus peak in Modane, France.

<u>Commissioning and data acquisition to begin in 2024.</u>

CCDs as dark matter detectors

- DM particle scatters off Si nucleus or valence electron, creating ionization
- one e-h pair produced per 3.77eV (avg) deposited
- bias voltage drifts charge to readout plane
- lateral diffusion of charge proportional to drift time (3D spatial resolution)
- pixelation allows for particle identification via cluster shape
- backgrounds rejection via spatially and temporally correlated decay products

Kellie McGuire

CCDs as dark matter detectors

- DM particle scatters off Si nucleus or valence electron, creating ionization
- one e-h pair produced per 3.77eV (avg) deposited
- bias voltage drifts charge to readout plane
- lateral diffusion of charge proportional to drift time (3D spatial resolution)
- pixelation allows for particle identification via cluster shape
- backgrounds rejection via spatially and temporally correlated decay products

IINST 16(2021)P06019

Skipper CCDs for sub-electron noise

- DAMIC-M CCDs equipped with floating gate "skipper" readout stage
- Floating gate allows for repeat non-destructive pixel charge measurements (NDCMs)
- Measure each pixel N_{skin} times for 1/sqrt(N_{skin}) noise suppression
- Achieve sub-electron resolution after a few hundred N_{skip}

Correlated double sampling (CDS)

Kellie McGuire

APS April Meeting 2023

The DAMIC-M Detector

- 208 9-Mpixel (6k x 1.5k) CCDs packaged on 52 modules
- high-resistivity (> $10k\Omega cm$) n-type silicon
- pixel size: 15 x 15 x 675 um³
- each CCD 3.5 grams --> 700 grams active mass
- custom electronics for fast readout and sub-e⁻ noise

Low-Background Chamber

LBC objectives

- Demonstrate skipper CCD performance
- Characterize backgrounds and inform mitigation strategies
- Provide test bench for dark current studies and reduction stategies
- Determine sensitivity to light dark matter

Prototype performance

- ~10 dru background rate
- Dark current ~4.5 x 10⁻³ e⁻/pixel/day (~20e⁻/mm²/day)
- 0.2 e⁻ noise at $N_{skip} = 650$

(using commercial readout electronics)

Sensitive to unexplored DM-e⁻ scattering parameter space...

LBC DM-electron scattering

Mask

- All pixel clusters \geq 7 e⁻, plus 10 trailing horizontal and vertical pixels (charge-transfer inefficiencies)
- Columns containing defects, indentified by:
 - Excess of 1e⁻ pixels (1e⁻ rate a function of column number)
 - High-charge pixels appearing in multiple 3-hour exposures
 - Deficit of 1e⁻ pixels (indication of serial register defect); mask all trailing columns
- Five-pixel window surrounding image

CCD partial image

LBC 90% CL upper limits

APS April Meeting 2023

Toward DAMIC-M's sensitivity goals...

Improve sub-electron resolution

Custom readout electronics for lower noise with fewer N_{skips}

Lower dark current levels

- Smaller-format CCDs (two DAMIC-M CCD modules with 8 6k x 1.5k CCDs are installed and operating at LSM; immediate 3x improvement in DC)
- Improved cooling
- Studies into sources of few-electron events (e.g., charge traps, transition radiation, radiative recombination, persistent images)
- Optimization of operating parameters

Lower backgrounds

- Cleaner CCDs (shorter surface exposure)
- More electroformed copper parts
- Low-activity cables

LSM

Thank you!

The DAMIC-M Collaboration

European Research Council Established by the European Comm

Additional slides...

Science reach

DAMIC-M will be sensitive to...

light WIMPs via DMnucleus elastic scattering and inelastic scattering (Migdal effect) PRL 127, 081805 (2021)

hidden-sector candidates via DMelectron scattering and DM absorption arXiv:1707.04591v1

hidden photon

 10^{-13}

 10^{-14}

 10^{-15}

 10^{-16}

 10^{-17}

 10^{0}

Ψ

Background reduction DAMIC-M backgrounds target $< 1 \, dru$

Mitigation

- Silicon wafers stored underground
- Minimal total surface exposure
- CCDs to be packaged and tested underground onsite
- Nitrogen storage to minimize radon deposition

Shielding

- External shield: polyethylene + low-background lead
- Internal shield: ancient lead

Materials Selection

- Electroformed copper: vacuum chamber, IR shield
- High-purity OFHC copper: parts outside IR shield
- Low-background flex cables arXiv:2303.10862

Rejection • Topology cut: a DM interaction would be pointlike

- Identify surface events from diffusion
- Spatially correlated decay products

JINST 16(2021)P06019

Low-Background Chamber

Prototype detector located underground at LSM in operation since early '22

Two 6kx4k skipper CCDs (18 grams active mass) installed in high-purity, oxygen-free copper box

Detector enclosed in copper cryostat, external shield open

Low-background lead and polyethylene external shield in place

LBC DM-electron scattering

Operation

- Substrate voltage: 70V
- CCD temperature: 130K
- Vacuum pressure: 5 x 10⁻⁶ mbar
- Each CCD half read through a separate skipper amplifier

Data sets

- Two science runs, both using 10x10 hardware binning (pixels summed before readout)
- SR1: continuous readout
- SR2: read first 110 (binned) rows; CCD cleared of charge before readout
- Total SR1 + SR2 exposure: 85.23 g-days

LBC DM-electron model

Generate DM signal templates

- QEDark to get differential rate for DM-e⁻ interactions
- Halo parameters from Phystat-DM
- Detector response:
 - Readout noise -- different for each amplifier
 - Electron recoil ionization yield from PRD 102, 063026 (2020)
 - Diffusion model from PRD 94, 082006 (2016) using LBC parameters

Build pixel charge distribution

- DM signal component
- Poisson background (dark current estimated per pixel)
- Gaussian noise

Perform joint binned likelihood fit

• four separate pixel distributions (2 amplifiers + 2 data sets) $_{10^{-2}}$

