3D-Printed Millimeter-Wave Lenses for DNP Target System

KELLIE MCGUIRE

SENIOR RESEARCH PRESENTATION

MAY 6, 2019

Dynamic nuclear polarization (DNP)

- **Prepare a nucleon target with unpaired electrons**
- **Place target in a strong magnetic field (e.g., 5T)**
- **Cool to cryogenic temperatures (~1K); ~99.8% of unpaired electrons are polarized**
- **Irradiate with microwaves to induce electron-to-nucleon spin transfer (the solid effect)**

$$
hv = B(g_e\mu_e + g_p\mu_p)
$$

For 5 T magnet, $v = 140$ GHz ($\lambda \approx 2.14$ mm \rightarrow **millimeter waves)**

DNP target system

DNP system (Image courtesy of UNH Nuclear Physics Group) **Need suitable material for the target cups:**

- **1. Transparent to mm-waves**
- **2. Good cryogenic properties**
- **3. No proton NMR signal**

Kel-F (PCTFE) has all of these properties.

3D-printing with Kel-F

Why 3D-printing?

- **Rapid prototyping**
- **Complex geometries**
- **Minimal waste**

3D-printing with Kel-F

Why 3D-printing?

- **Rapid prototyping**
- **Complex geometries**
- **Minimal waste**

"Filatizer" for making Kel-F printer filament.

3D-printing with Kel-F

Why 3D-printing?

- **Rapid prototyping**
- **Complex geometries**
- **Minimal waste**

Kel-F challenges:

- **Thermally unstable**
- **Highly viscous**
- **Self-lubricating**
- **HCl and HF decomposition**

"Filatizer" for making Kel-F printer filament.

Kel-F target cups

Quality of print can vary dramatically and is highly dependent on temperature and speed of extrusion.

Kel-F target cups

Quality of print can vary dramatically and is highly dependent on temperature and speed of extrusion.

3D-printed Kel-F target cups survived cooling to 1K.

The polarizing radiation is in the form of a Gaussian beam incident on the target.

3D-printed lenses could be built into the target cups to evenly distribute the beam and help drive up the degree of nucleon spin polarization.

Beam is imaged using a calorimeter consisting of 25 "pixels" 3D-printed with iron-infused PLA and positioned inside a temperature-controlled box.

ΔT (°C)

Loss mechanisms:

1. Absorption

- **1. Absorption**
- **2. Surface reflection**

- **1. Absorption**
- **2. Surface reflection**

- **1. Absorption**
- **2. Surface reflection**
- **3. Non-constant refractive index**

- **1. Absorption**
- **2. Surface reflection**
- **3. Non-constant refractive index**
- **4. Diffraction ???**

Next steps:

- **1. Continue investigating properties of lenses: focal plane, hot-spot ring**
- **2. Model expected results based on known losses to better assess lens performance**
- **3. Perform further analysis of lens results: can results be attributed entirely to absorption/reflection losses and hot-spot spread?**
- **4. Experiment more with Fresnel lenses to minimize absorption losses**
- **5. Devise lens mount for easier alignment (lenses are very difficult to center on beam)**

My deepest appreciation to Professor Elena Long for her mentorship over the past 2 years.

Tristan Anderson Prof. Maurik Holtrop Lucas Jameson Ryan McGuire Ronny Nguyen Tony Rogers Nathaly Santiesteban

…and the UNH physics faculty. Thank you!!